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Disappearances of uncoupled modes in two-dimensional photonic crystals due to anisotropies
of liquid crystals
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~Received 12 November 2002; published 16 May 2003!

We demonstrate disappearances of uncoupled modes in two-dimensional photonic crystals due to anisotro-
pies of liquid crystals theoretically. Mirror symmetry disappears in wave vectors by rotating directors of liquid
crystals, which results in disappearances of uncoupled modes that cannot be excited by external plane waves.
This property may provide large tunabilities in two-dimensional photonic crystals utilizing liquid crystals.
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I. INTRODUCTION

Recently, dielectric periodic structures of optical wav
length order have attracted much attention as photonic c
tals from both fundamental and practical viewpoints, beca
novel concepts such as photonic band gaps have been
dicted, and various new applications of the photonic crys
have been proposed@1–3#. In earlier work, two fundamen
tally new optical principles, that is, the localization of lig
@4–6# and the controllable inhibition of spontaneous em
sion of light @7–10#, were considered to be the most impo
tant. The existence of photonic band gaps can be investig
by studying transmission spectra. In theoretical and exp
mental studies, however, it has been known that the tra
mission spectra are not observed in uncoupled modes,
ertheless, photonic band states exist in photonic b
structures@11,12#. Plane waves and uncoupled modes
symmetric and antisymmetric under the mirror reflection,
spectively. Therefore, the plane waves cannot excite the
coupled modes.

In conventional photonic crystals composed of isotro
materials, high rotational and mirror symmetry exists
wave-vector spaces. In photonic crystals composed of an
tropic materials, however, no such symmetry generally
ists. For example, there exist liquid crystals~LCs! with
anisotropies whose properties can easily be changed by
perature and electric field. For many applications, it is use
to obtain tunabilities of photonic band structures throu
electro-optic effects. Therefore, tunable photonic crystals
filtrated with liquid crystals have been proposed@13–18#.

In this paper, we demonstrate disappearances of
coupled modes in two-dimensional photonic crystals due
anisotropies of liquid crystals. The two-dimensional photo
crystals are supposed to be composed of liquid-crystal r
with square lattices. In conventional two-dimensional pho
nic crystals, two modes, that is, the transversal electric~TE!
mode and the transversal magnetic~TM! mode, exist. In pho-
tonic crystals composed of liquid crystals, generally, none
these two classifications of modes exists due to anisotro
of liquid crystals. Even in such photonic crystals, howev
we can classify the TE and TM modes in the cases of dir
tors of liquid crystals parallel and perpendicular to tw
dimensional planes.
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Therefore, we treat the case of directors of liquid cryst
parallel to two-dimensional planes and the TE mode, beca
electric fields exist only in two-dimensional planes in t
case of the TE mode, and are strongly affected by rota
directors of liquid crystals.

II. THEORY

Following discussion of Busch and John@13#, we start
with the wave equation satisfied by the magnetic field
two-dimensional periodic structures in order to determ
photonic band structures of two-dimensional photonic cr
tals utilizing liquid crystals,

“3$e21~r !“3H~r !%5
v2

c2
H~r !, ~1!

where“•H(r )50. The dielectric tensore(r )5e(r1R) is
periodic with respect to the lattice vectorR generated by the
primitive translation and it may be expanded in a Four
series onG, the reciprocal lattice vector:

e i j ~r !5(
G

e i j ~G!exp~ iG•r ! ~ i , j 5x,y!. ~2!

A liquid crystal possesses two kinds of dielectric indice
that is, an ordinary dielectric indexe0 and an extraordinary
dielectric indexee. Light with electric field perpendicular
and parallel to directors of liquid crystals has ordinary a
extraordinary dielectric indices, respectively. In the case
directors of liquid crystals parallel to two-dimension
planes, the components of the dielectric tensor are re
sented as follows:

exx~r !5eo~r !sin2f1ee~r !cos2f, ~3a!

eyy~r !5eo~r !cos2f1ee~r !sin2f, ~3b!

exy~r !5eyx~r !5@ee~r !2eo~r !#cosf sinf, ~3c!

where f is a rotation angle of the director of the liqui
crystal, and the director of the liquid crystal isn
5(cosf,sinf). In the isotropic case,eo(r ) is equal toee(r ).
©2003 The American Physical Society12-1
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Equation~1! comprises a set of three coupled different
equations with periodic coefficients. In two-dimension
photonic crystals, we can defineeG as the direction which is
perpendicular to the two-dimensional plane. Using Bloc
theorem, we may expand the magnetic field as

H~r !5(
G

h~G!eG exp$ i ~k1G!•r% ~4!

in the case of the TE mode. Inserting Eqs.~2! and ~4! into
Eq. ~1! and multiplying byeG result in the following infinite
matrix eigenvalue problem:

(
G8

HG,G8h~G8!5
v2

c2
h~G!, ~5a!

where

HG,G85eyy
21~G2G8!~kx1Gx!~kx1Gx8!1exx

21~G2G8!~ky

1Gy!~ky1Gy8!2exy
21~G2G8!~ky1Gy!~kx1Gx8!

2eyx
21~G2G8!~kx1Gx!~ky1Gy8!. ~5b!

For numerical purposes, Eq.~5a! is truncated by retaining
only a finite number of reciprocal lattice vectors. The ma
numerical problem in obtaining the eigenvalue is the eva
ation of the Fourier coefficients of the inverse dielectric te
sors in Eq.~5b!. The best method is to calculate the matrix
Fourier coefficients of real space tensors and then take
inverse in order to obtain the required Fourier coefficien
This method was shown by Ho, Chan, and Soukoulis~HCS!
@19#. The eigenvalues computed with the HCS method
289 plane waves are estimated to be in error less than 1

Following Sakoda’s discussion@12#, moreover, we calcu-
late transmission spectra. Magnetic fieldHz in two-
dimensional photonic crystals utilizing liquid crystals is s
isfied in the following differential equation:

]

]x Feyy
21~x,y!

]Hz

]x G1
]

]y Fexx
21~x,y!

]Hz

]y G
2

]

]y Fexy
21~x,y!

]Hz

]x G2
]

]x Feyx
21~x,y!

]Hz

]y G1
v2

c2
Hz50.

~6!

We assume that the two-dimensional photonic crystal con
ered here possesses 16 layers.

III. NUMERICAL CALCULATION AND DISCUSSION

Let us consider that plane waves are incident on photo
crystals, as shown in Fig. 1. We assume that photonic c
tals are composed of liquid-crystal rods with square lattic
and that the background is an air region. Such a condi
could be realized by silica aerogels. Silica aerogels
05661
l
l

s

-
-
f
its
.

r
.

-

d-

ic
s-
s,
n

re

porous structures and diameters of pores are about 20
Refractive indices of silica aerogels are about 1.03, that
they are almost the same as that of the air. Optical absorp
of the hydrophobic silica aerogels occurs around the infra
region @20#. Therefore, the hydrophobic silica aerogels a
useful in the visible range. Indeed, the hydrophobic sil
aerogels are used as very low refractive-index materials@21#.
That is, the two-dimensional photonic crystals composed
liquid crystals can be prepared by making a periodic array
holes in the silica aerogel plate and then infiltrating liqu
crystals into the holes. When diameters of the holes are a
1 mm and are much larger than those of the pores, wet liq
crystals could be trapped into the drilled holes. In making
holes in the silica aerogel plate by a laser, moreover, po
around the holes may be broken by the heat of the la
Then, we do not have to consider the leak of liquid cryst
into the pores around the holes. An experimental fabricat
of tunable two-dimensional photonic crystals infiltrated w
liquid crystals has already been reported@15#. By the use of
silica aerogels, moreover, photonic crystals composed o
rods in liquid-crystal plates could be realized.

When we choose high refractive-index materials as
background, we cannot obtain high anisotropies caused
liquid crystals although we can obtain high dispersion re
tions of frequencies and wave vectors. When we choose
terials whose refractive indices are near to those of liq
crystals as the background, on the other hand, we ca
obtain high dispersion relations although we can obtain h
anisotropies caused by liquid crystals. Therefore, we c
sider that the model we propose here is appropriate w
respect to both high dispersion relations and high aniso
pies.

We consider that ordinary and extraordinary refractive
dices of liquid crystals arenLC

o 51.522 andnLC
e 51.706

FIG. 1. Schematic model that plane waves are incident on p
tonic crystals composed of liquid crystals. Then and f in the
diagram indicate the director and rotation angle of liquid crysta
2-2
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~5CB!, respectively, and that a radius of a rod isR/a50.4,
where a is a lattice constant. In Fig. 1,f in the diagram
indicates the rotation angle of directors of liquid crystals.

When an electric field is not applied, directors of liqu
crystals are orientated at random. That is, anisotropies
liquid crystals disappear and liquid crystals become iso
pic, and then the average refractive index of liquid crystal
nLC

av 5(nLC
e 12nLC

o )/351.583.
In Fig. 2, we display the band structure of tw

dimensional photonic crystals when electric field is not a
plied, that is, liquid crystals become isotropic. TheG, X, and
M points indicate the high symmetric points in the first Br
louin zone.

The G and M, points possessC4v symmetry and theX
point possessesC2v symmetry, respectively, in the grou
theory, and theGX, GM , andMX segments possess mirro
symmetry, which causes symmetric and antisymme
modes on these segments. A more detailed discussion o
symmetry in two-dimensional photonic crystals is given
Ref. @22#. For example, theA and B modes in a shaded
region in Fig. 2 mean the symmetric and antisymme
modes on theGX segment. The sixth band is theB mode.
Symmetric plane waves on theGX segment cannot excite th
antisymmetricB mode, and therefore, transmission spec
are not observed at theB mode. That is, theB mode is an
uncoupled mode.

When an electric field is applied in two-dimension
planes, liquid crystals become anisotropic. Then, we can
use the photonic band structures in Fig. 2 because anis
pies of liquid crystals break high symmetry. For examp
profiles of the sixth band atf50° and 30° are shown in
Figs. 3~a! and 3~b!, respectively. In the isotropic case, tran
mission spectra in Fig. 1 reflect on the band structure on
GX segment drawn by the arrow in these figures. In Fig. 3~a!,
it should be noted that mirror symmetry exists on theGX
segment drawn by the arrow. Therefore, we can classify
A andB modes on theGX segment in spite of the photoni
crystals being composed of anisotropic materials.

In Fig. 3~b!, on the other hand, it should be noted that
mirror symmetry exists on theGX segment drawn by the
arrow due to the distortion of the profile of the sixth ban
Then, we cannot classify theA and B modes on theGX

FIG. 2. Band structure of two-dimensional photonic cryst
with square lattices when directors of liquid crystals are orienta
at random. The average refractive index of liquid crystals isnLC

av

51.583. TheA andB modes in a shaded region indicate symmet
and antisymmetric modes, respectively.
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segment. That is, the uncoupled mode disappears in the
tonic crystals.

In order to investigate the existence and disappearanc
uncoupled modes, we calculate transmission spectra in t
dimensional photonic crystals when plane waves are in
dent, as shown in Fig. 1. We focus our attention on
shaded region in Fig. 2. Figures 4~a!–4~e! show transmit-
tances in theG-X direction atf50°, 30°, 45°, 60°, and
90°, respectively. In Figs. 4~a! and 4~e!, there exist the fre-
quency regions in which transmittances are zero or very l
This is because mirror symmetry exists on theGX segment at
f50° and 90°. Electric field has an ordinary refractive i
dex nLC

o at f590° although the electric field has an extrao
dinary refractive index nLC

e at f50°. Properties of photonic
crystals atf590° become weaker than those of photon
crystals atf50° because nLC

o is lower than nLC
e , and there-

fore, the transmittance is not zero in Fig. 4~e!.
In Figs. 4~b!–4~d!, on the other hand, no clear frequen

regions of uncoupled modes exist in transmission spec
This is because no mirror symmetry exists on theGX seg-
ment except atf50° and 90° due to anisotropies of liqui
crystals. However, it should be noted that there exist
frequency regions in which the transmittances are very
although the transmittances are very high in a certain
quency region. In Fig. 4~b!, for example, the transmittance

d

FIG. 3. Profiles of the sixth band when directors of liquid cry
tals are orientated atf5(a) 0°, ~b! 30°. The arrow indicates the
G-X direction. The ordinary and extraordinary refractive indices
nLC

o 51.522 andnLC
e 51.706, respectively.
2-3
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FIG. 4. Transmittance when directors of liq
uid crystals are orientated at~a! f50°, ~b! 30°,
~c! 45°, ~d! 60°, and~e! 90°, respectively.
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very high in the frequency range of (0.96–0.98)2pc/a,
which can be explained by the profiles of the sixth band
Fig. 3~b!. As shown in Fig. 3~b!, the profile of the sixth band
is strongly twisted in the frequency range
(0.96–0.98)2pc/a at f530°. In such a frequency range
mirror symmetry greatly deteriorates, which causes
strong coupling of external plane waves. Except in suc
frequency region, however, the profile of the sixth band
not strongly twisted. Therefore, there exist the frequency
gions in which the transmittances are very high or very lo

In Fig. 5, moreover, we display the dependence of ma
mum transmittances resulting from the sixth band excited
external plane waves onf ranging from 0° to 90°. As
shown in Fig. 5, maximum transmittances are very high
the region off from about 10° to about 88°. The existen
and disappearance of uncoupled modes correspond to o
ing and closing of photonic band gaps, respectively, in tra
mission spectra. In conventional photonic crystals, open
and closing of photonic band gaps need large change
dielectric indices. By the use of anisotropies of liquid cry
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tals, however, uncoupled modes become controllable.
mentioned above, the transmittances are zero or very low
f50° and 90° due to uncoupled modes. In transmiss
spectra, therefore, we could obtain large tunabilities by ra

FIG. 5. Dependence of maximum transmittances resulting fr
the sixth band excited by external plane waves onf ranging from
0° to 90°.
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ing directors of liquid crystals fromf50° to f510° or
from f590° to f588°.

IV. CONCLUSION

We demonstrated disappearances of uncoupled mode
two-dimensional photonic crystals due to anisotropies of
uid crystals theoretically. Mirror symmetry disappears
wave vectors by rotating directors of liquid crystals, whi
causes disappearances of uncoupled modes that cann
excited by external plane waves. This property may prov
re

a

-
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large tunabilities in two-dimensional photonic crystals utili
ing liquid crystals.
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